draft-ietf-ipwave-ipv6-over-80211ocb-10.txt   draft-ietf-ipwave-ipv6-over-80211ocb-11.txt 
Network Working Group A. Petrescu Network Working Group A. Petrescu
Internet-Draft CEA, LIST Internet-Draft CEA, LIST
Intended status: Standards Track N. Benamar Intended status: Standards Track N. Benamar
Expires: April 15, 2018 Moulay Ismail University Expires: April 19, 2018 Moulay Ismail University
J. Haerri J. Haerri
Eurecom Eurecom
J. Lee J. Lee
Sangmyung University Sangmyung University
T. Ernst T. Ernst
YoGoKo YoGoKo
October 12, 2017 October 16, 2017
Transmission of IPv6 Packets over IEEE 802.11 Networks operating in mode Transmission of IPv6 Packets over IEEE 802.11 Networks operating in mode
Outside the Context of a Basic Service Set (IPv6-over-80211-OCB) Outside the Context of a Basic Service Set (IPv6-over-80211-OCB)
draft-ietf-ipwave-ipv6-over-80211ocb-10.txt draft-ietf-ipwave-ipv6-over-80211ocb-11.txt
Abstract Abstract
In order to transmit IPv6 packets on IEEE 802.11 networks running In order to transmit IPv6 packets on IEEE 802.11 networks running
outside the context of a basic service set (OCB, earlier "802.11p") outside the context of a basic service set (OCB, earlier "802.11p")
there is a need to define a few parameters such as the supported there is a need to define a few parameters such as the supported
Maximum Transmission Unit size on the 802.11-OCB link, the header Maximum Transmission Unit size on the 802.11-OCB link, the header
format preceding the IPv6 header, the Type value within it, and format preceding the IPv6 header, the Type value within it, and
others. This document describes these parameters for IPv6 and IEEE others. This document describes these parameters for IPv6 and IEEE
802.11-OCB networks; it portrays the layering of IPv6 on 802.11-OCB 802.11-OCB networks; it portrays the layering of IPv6 on 802.11-OCB
skipping to change at page 1, line 46 skipping to change at page 1, line 46
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/. Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 15, 2018. This Internet-Draft will expire on April 19, 2018.
Copyright Notice Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 2, line 27 skipping to change at page 2, line 27
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Communication Scenarios where IEEE 802.11-OCB Links are Used 5 3. Communication Scenarios where IEEE 802.11-OCB Links are Used 5
4. IPv6 over 802.11-OCB . . . . . . . . . . . . . . . . . . . . 5 4. IPv6 over 802.11-OCB . . . . . . . . . . . . . . . . . . . . 5
4.1. Maximum Transmission Unit (MTU) . . . . . . . . . . . . . 5 4.1. Maximum Transmission Unit (MTU) . . . . . . . . . . . . . 5
4.2. Frame Format . . . . . . . . . . . . . . . . . . . . . . 6 4.2. Frame Format . . . . . . . . . . . . . . . . . . . . . . 5
4.2.1. Ethernet Adaptation Layer . . . . . . . . . . . . . . 6 4.2.1. Ethernet Adaptation Layer . . . . . . . . . . . . . . 6
4.3. Link-Local Addresses . . . . . . . . . . . . . . . . . . 8 4.3. Link-Local Addresses . . . . . . . . . . . . . . . . . . 8
4.4. Address Mapping . . . . . . . . . . . . . . . . . . . . . 9 4.4. Address Mapping . . . . . . . . . . . . . . . . . . . . . 8
4.4.1. Address Mapping -- Unicast . . . . . . . . . . . . . 9 4.4.1. Address Mapping -- Unicast . . . . . . . . . . . . . 8
4.4.2. Address Mapping -- Multicast . . . . . . . . . . . . 9 4.4.2. Address Mapping -- Multicast . . . . . . . . . . . . 8
4.5. Stateless Autoconfiguration . . . . . . . . . . . . . . . 9 4.5. Stateless Autoconfiguration . . . . . . . . . . . . . . . 9
4.6. Subnet Structure . . . . . . . . . . . . . . . . . . . . 10 4.6. Subnet Structure . . . . . . . . . . . . . . . . . . . . 9
5. Security Considerations . . . . . . . . . . . . . . . . . . . 10 5. Security Considerations . . . . . . . . . . . . . . . . . . . 10
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 11 7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 11
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 12 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 11
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 12 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 12
9.1. Normative References . . . . . . . . . . . . . . . . . . 12 9.1. Normative References . . . . . . . . . . . . . . . . . . 12
9.2. Informative References . . . . . . . . . . . . . . . . . 15 9.2. Informative References . . . . . . . . . . . . . . . . . 14
Appendix A. ChangeLog . . . . . . . . . . . . . . . . . . . . . 16 Appendix A. ChangeLog . . . . . . . . . . . . . . . . . . . . . 16
Appendix B. 802.11p . . . . . . . . . . . . . . . . . . . . . . 22 Appendix B. 802.11p . . . . . . . . . . . . . . . . . . . . . . 22
Appendix C. Aspects introduced by the OCB mode to 802.11 . . . . 22 Appendix C. Aspects introduced by the OCB mode to 802.11 . . . . 22
Appendix D. Changes Needed on a software driver 802.11a to Appendix D. Changes Needed on a software driver 802.11a to
become a 802.11-OCB driver . . . 27 become a 802.11-OCB driver . . . 26
Appendix E. EtherType Protocol Discrimination (EPD) . . . . . . 28 Appendix E. EtherType Protocol Discrimination (EPD) . . . . . . 27
Appendix F. Design Considerations . . . . . . . . . . . . . . . 29 Appendix F. Design Considerations . . . . . . . . . . . . . . . 28
F.1. Vehicle ID . . . . . . . . . . . . . . . . . . . . . . . 29 F.1. Vehicle ID . . . . . . . . . . . . . . . . . . . . . . . 28
F.2. Reliability Requirements . . . . . . . . . . . . . . . . 29 F.2. Reliability Requirements . . . . . . . . . . . . . . . . 29
F.3. Multiple interfaces . . . . . . . . . . . . . . . . . . . 30 F.3. Multiple interfaces . . . . . . . . . . . . . . . . . . . 29
F.4. MAC Address Generation . . . . . . . . . . . . . . . . . 31 F.4. MAC Address Generation . . . . . . . . . . . . . . . . . 30
Appendix G. IEEE 802.11 Messages Transmitted in OCB mode . . . . 31 Appendix G. IEEE 802.11 Messages Transmitted in OCB mode . . . . 31
Appendix H. Implementation Status . . . . . . . . . . . . . . . 31 Appendix H. Implementation Status . . . . . . . . . . . . . . . 31
H.1. Capture in Monitor Mode . . . . . . . . . . . . . . . . . 32 H.1. Capture in Monitor Mode . . . . . . . . . . . . . . . . . 32
H.2. Capture in Normal Mode . . . . . . . . . . . . . . . . . 35 H.2. Capture in Normal Mode . . . . . . . . . . . . . . . . . 34
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 36
1. Introduction 1. Introduction
This document describes the transmission of IPv6 packets on IEEE Std This document describes the transmission of IPv6 packets on IEEE Std
802.11-OCB networks [IEEE-802.11-2016] (a.k.a "802.11p" see 802.11-OCB networks [IEEE-802.11-2016] (a.k.a "802.11p" see
Appendix B). This involves the layering of IPv6 networking on top of Appendix B). This involves the layering of IPv6 networking on top of
the IEEE 802.11 MAC layer, with an LLC layer. Compared to running the IEEE 802.11 MAC layer, with an LLC layer. Compared to running
IPv6 over the Ethernet MAC layer, there is no modification expected IPv6 over the Ethernet MAC layer, there is no modification expected
to IEEE Std 802.11 MAC and Logical Link sublayers: IPv6 works fine to IEEE Std 802.11 MAC and Logical Link sublayers: IPv6 works fine
directly over 802.11-OCB too, with an LLC layer. directly over 802.11-OCB too, with an LLC layer.
skipping to change at page 5, line 21 skipping to change at page 5, line 21
[I-D.ietf-ipwave-vehicular-networking-survey], that lists some [I-D.ietf-ipwave-vehicular-networking-survey], that lists some
scenarios and requirements for IP in Intelligent Transportation scenarios and requirements for IP in Intelligent Transportation
Systems. Systems.
The link model is the following: STA --- 802.11-OCB --- STA. In The link model is the following: STA --- 802.11-OCB --- STA. In
vehicular networks, STAs can be RSRUs and/or OBRUs. While 802.11-OCB vehicular networks, STAs can be RSRUs and/or OBRUs. While 802.11-OCB
is clearly specified, and the use of IPv6 over such link is not is clearly specified, and the use of IPv6 over such link is not
radically new, the operating environment (vehicular networks) brings radically new, the operating environment (vehicular networks) brings
in new perspectives. in new perspectives.
The 802.11-OCB links form and terminate; nodes connected to these The mechanisms for forming and terminating, discovering, peering and
links peer, and discover each other; the nodes are mobile. However, mobility management for 802.11-OCB links are not described in this
the precise description of how links discover each other, peer and document.
manage mobility is not given in this document.
4. IPv6 over 802.11-OCB 4. IPv6 over 802.11-OCB
4.1. Maximum Transmission Unit (MTU) 4.1. Maximum Transmission Unit (MTU)
The default MTU for IP packets on 802.11-OCB is 1500 octets. It is The default MTU for IP packets on 802.11-OCB is 1500 octets. It is
the same value as IPv6 packets on Ethernet links, as specified in the same value as IPv6 packets on Ethernet links, as specified in
[RFC2464]. This value of the MTU respects the recommendation that [RFC2464]. This value of the MTU respects the recommendation that
every link on the Internet must have a minimum MTU of 1280 octets every link on the Internet must have a minimum MTU of 1280 octets
(stated in [RFC8200], and the recommendations therein, especially (stated in [RFC8200], and the recommendations therein, especially
skipping to change at page 12, line 37 skipping to change at page 12, line 17
participants to discussions in network working groups. participants to discussions in network working groups.
The authors would like to thank participants to the Birds-of- The authors would like to thank participants to the Birds-of-
a-Feather "Intelligent Transportation Systems" meetings held at IETF a-Feather "Intelligent Transportation Systems" meetings held at IETF
in 2016. in 2016.
9. References 9. References
9.1. Normative References 9.1. Normative References
[I-D.ietf-tsvwg-ieee-802-11]
Szigeti, T., Henry, J., and F. Baker, "Diffserv to IEEE
802.11 Mapping", draft-ietf-tsvwg-ieee-802-11-09 (work in
progress), September 2017.
[RFC1042] Postel, J. and J. Reynolds, "Standard for the transmission [RFC1042] Postel, J. and J. Reynolds, "Standard for the transmission
of IP datagrams over IEEE 802 networks", STD 43, RFC 1042, of IP datagrams over IEEE 802 networks", STD 43, RFC 1042,
DOI 10.17487/RFC1042, February 1988, DOI 10.17487/RFC1042, February 1988,
<https://www.rfc-editor.org/info/rfc1042>. <https://www.rfc-editor.org/info/rfc1042>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>. <https://www.rfc-editor.org/info/rfc2119>.
skipping to change at page 15, line 40 skipping to change at page 15, line 17
over Ethernet Networks", draft-hinden-6man-rfc2464bis-02 over Ethernet Networks", draft-hinden-6man-rfc2464bis-02
(work in progress), March 2017. (work in progress), March 2017.
[I-D.ietf-ipwave-vehicular-networking-survey] [I-D.ietf-ipwave-vehicular-networking-survey]
Jeong, J., Cespedes, S., Benamar, N., Haerri, J., and M. Jeong, J., Cespedes, S., Benamar, N., Haerri, J., and M.
Wetterwald, "Survey on IP-based Vehicular Networking for Wetterwald, "Survey on IP-based Vehicular Networking for
Intelligent Transportation Systems", draft-ietf-ipwave- Intelligent Transportation Systems", draft-ietf-ipwave-
vehicular-networking-survey-00 (work in progress), July vehicular-networking-survey-00 (work in progress), July
2017. 2017.
[I-D.ietf-tsvwg-ieee-802-11]
Szigeti, T., Henry, J., and F. Baker, "Diffserv to IEEE
802.11 Mapping", draft-ietf-tsvwg-ieee-802-11-09 (work in
progress), September 2017.
[I-D.perkins-intarea-multicast-ieee802] [I-D.perkins-intarea-multicast-ieee802]
Perkins, C., Stanley, D., Kumari, W., and J. Zuniga, Perkins, C., Stanley, D., Kumari, W., and J. Zuniga,
"Multicast Considerations over IEEE 802 Wireless Media", "Multicast Considerations over IEEE 802 Wireless Media",
draft-perkins-intarea-multicast-ieee802-03 (work in draft-perkins-intarea-multicast-ieee802-03 (work in
progress), July 2017. progress), July 2017.
[IEEE-1609.2] [IEEE-1609.2]
"IEEE SA - 1609.2-2016 - IEEE Standard for Wireless Access "IEEE SA - 1609.2-2016 - IEEE Standard for Wireless Access
in Vehicular Environments (WAVE) -- Security Services for in Vehicular Environments (WAVE) -- Security Services for
Applications and Management Messages. Example URL Applications and Management Messages. Example URL
skipping to change at page 16, line 46 skipping to change at page 16, line 33
document freely available at URL document freely available at URL
http://standards.ieee.org/getieee802/ http://standards.ieee.org/getieee802/
download/802.11p-2010.pdf retrieved on September 20th, download/802.11p-2010.pdf retrieved on September 20th,
2013.". 2013.".
Appendix A. ChangeLog Appendix A. ChangeLog
The changes are listed in reverse chronological order, most recent The changes are listed in reverse chronological order, most recent
changes appearing at the top of the list. changes appearing at the top of the list.
From draft-ietf-ipwave-ipv6-over-80211ocb-10 to draft-ietf-ipwave-
ipv6-over-80211ocb-11
o Shortened the paragraph on forming/terminating 802.11-OCB links.
o Moved the draft tsvwg-ieee-802-11 to Informative References.
From draft-ietf-ipwave-ipv6-over-80211ocb-09 to draft-ietf-ipwave- From draft-ietf-ipwave-ipv6-over-80211ocb-09 to draft-ietf-ipwave-
ipv6-over-80211ocb-10 ipv6-over-80211ocb-10
o Removed text requesting a new Group ID for multicast for OCB. o Removed text requesting a new Group ID for multicast for OCB.
o Added a clarification of the meaning of value "3333" in the o Added a clarification of the meaning of value "3333" in the
section Address Mapping -- Multicast. section Address Mapping -- Multicast.
o Added note clarifying that in Europe the regional authority is not o Added note clarifying that in Europe the regional authority is not
ETSI, but "ECC/CEPT based on ENs from ETSI". ETSI, but "ECC/CEPT based on ENs from ETSI".
 End of changes. 16 change blocks. 
28 lines changed or deleted 34 lines changed or added

This html diff was produced by rfcdiff 1.45. The latest version is available from http://tools.ietf.org/tools/rfcdiff/